I²C Data Communication Protocol for # Flow Sensors Series V 1.0.2 # **Contents** | 1 | . Overview | 2 | |---|--|---| | 2 | . Pin Definitions | 2 | | 3 | . Bus Properties | 2 | | | 3.1 Bus Idle (A) | 3 | | | 3.2 Start Bit (B) | 3 | | | 3.3 Stop Bit (C) | 3 | | | 3.4 Data Bits (D) | 3 | | | 3.5 Acknowledge Bit | 3 | | 4 | . Device Address | 4 | | 5 | . Commands | 4 | | | 5.1 Retrieve Series Number (Command Code: 82h) | 5 | | | 5.2 Read Instant Flow and Pressure Index (Command Code: 84h) | 6 | | | 5.3 Read I ² C Address (Command Code: 85h) | 7 | | | 5.4 Set I ² C Address (Command Code: 05h) | 7 | | | 5.5 Measure Offset (Auto Zero) (Command Code: 1Ch) | 7 | | | 5.6 Retrieve Series Offset (Command Code: 81h) | 8 | | ₹ | eferences | 9 | # 1. Overview This document specifies the commonly used I²C data communication protocols for flow sensors series. This document will also review some I²C bus basics, but is not intended to give detailed descriptions on I²C bus specification. For detailed I²C bus specification, please refer to reference [1]. For other communication protocols, please contact Siargo. # 2. Pin Definitions Pin definitions reference manual. # 3. Bus Properties Two primary I²C bus properties are as follows: - I The data transfer can be started only when the bus is idle. - During data transfer, the series data line (SDA) must be kept steady whenever the series clock line (SCL) is high. When the series clock line is high, a change of the series data line from high to low or from low to high will be treated as a start condition or a stop condition. Fig. 3-1 shows the bus timing diagram: Fig. 3-1: Timing diagram of I²C bus # 3.1 Bus Idle (A) Both the series data line and the series clock line are high. # 3.2 Start Condition (B) When SCL is high, a change of SDA from high to low represents a start condition that initiates data transfer. A start condition must present before any data transfer commands can be executed. # 3.3 Stop Condition (C) When SCL is high, a change of SDA from low to high represents a stop condition that ceases data transfer. All the data transfer commands must be accomplished before a stop condition presents. #### 3.4 Data (D) After the start condition, the series data line must be kept steady when the series clock line is high. The series data line can change during the period when the series clock line is low, and each data bit must correspond to a clock pulse. Each data transfer will begin with a start condition and cease after a stop condition. Every byte put on the series data line must be 8 bits long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an Acknowledge bit. The number of data bytes between a start condition and a stop condition will be decided by the bus master. # 3.5 Acknowledge Bit The master is initially in the master transmit mode by sending a start bit followed by the slave address that it wishes to communicate with, which is finally followed by a single bit representing whether it wishes to write(0) to or read(1) from the slave. If the slave exists on the bus then it will respond with acknowledge (ACK) bit (active low for acknowledged) for that address. The master must provide an extra SCL pulse for each ACK bit. The master then continues in either transmit or receive mode (according to the read/write bit it sent), and the slave continues in its complementary mode (receive or transmit, respectively). The address and the data bytes are sent most significant bit first. The start bit is indicated by a high-to-low transition of SDA with SCL high; the stop bit is indicated by a low-to-high transition of SDA with SCL high. If the master wishes to write into the slave then it repeatedly sends a byte with the slave sending an ACK bit (Fig. 3-2). (In this situation, the master is in the master transmit mode and the slave is in the slave receive mode.) If the master wishes to read from the slave then it repeatedly receives a byte from the slave, the master sending an ACK bit after every byte but the last one (Fig. 3-2). (In this situation, the master is in the master receive mode and the slave is in the slave transmit mode.) The master then ends transmission with a stop bit, or it may send another start bit if it wishes to retain control of the bus for another transfer (a "combined message"). Fig. 3-2: Acknowledge Bit # 4. Device Address The I²C interface of flow sensors adopts the slave-master mode with transfer rate 10kbit/s ~ 100kbit/s. The slave address is always an even number between 02h and FEh, i.e., totally there are 127 available slave addresses. Multiple flow sensors can be configured as a multi-master multi-slave bus for multi-device communication, provided that each sensor (i.e., slave device) has a unique address. The default address is 02H. The address 00h is reserved address for broadcasting. The user can use this reserved broadcasting address to perform a "write" operation to all the slave devices. However, it is prohibited to use 00h as any slave address. The user can use the default address of a slave or reset its address through the access provided by the broadcasting address. # 5. Commands The flow sensors series use a communication mode based on the command Interpretation mechanism. The data accesses are accomplished through various commands. A proper command consists of a command code and none, one or multiple command values. If a command has only a command code without any command value, it is called a "pure" command; otherwise, it is called a "compound" command. The most significant byte of the command code is utilized to indicate the command is a "read" command (80h) or a "write" command (00h). An entire command must be continuously transmitted into the sensor under inquiry within a frame (between a start bit and a stop bit); otherwise, an error may occur. The following commands are supported: - 1) Read series number; - 2) Read instant flow index; - 3) Read or write I²C address; - 4) Measure offset (auto zero); - 5) Read calibration gas. - 5.1 Retrieve Series Number (Command Code: 82h) # 5.1.1 Procedure This command is a "pure" command (which has no command values). The procedure is as follows: - 1) The master sends a start bit; - The master sends "slave address + write bit", and the slave acknowledges; - 3) The master sends the command code "82h", and the slave acknowledges; - 4) The master sends a re-start bit; - 5) The master sends "slave address + read bit", and the slave acknowledges; - 6) The slave returns the 1st byte of the series number, and the master acknowledges; - 7) The slave returns the 2nd byte of the series number, and the master acknowledges; - 16) The slave returns the 11th byte of the series number, and the master acknowledges; - 17) The slave returns the 12th byte of the series number, and the master doesn't acknowledge; - 18) The master sends a stop bit. # 5.1.2 Explanation This command is used for enquiring the series number of the flow sensor. The series number is unique for each flow sensor, and consists of 12 alphabets and/or numeric numbers. The series number can serve as the manufacturer ID number for checking its factory default parameter settings. 5.2 Read Instant Flow and Pressure Index (Command Code: 84h) #### 5.2.1 Procedure This command is a "pure" command (which has no command values). The procedure is as follows: 1) The master sends a start bit; - 2) The master sends "slave address + write bit", and the slave acknowledges; - 3) The master sends the command code "84h", and the slave acknowledges; - 4) The master sends a re-start bit; - 5) The master sends "slave address + read bit", and the slave acknowledges; - 6) The slave returns the most significant 8 bits of the flow Index, and the master acknowledges; - 7) The slave returns the next most significant 8 bits of the flow index, and the master acknowledges; - 8) The slave returns the next least significant 8 bits of the flow index, and the master acknowledges; - The slave returns the least significant 8 bits of the flow index, and the master doesn't acknowledge; - 10) The slave returns the most significant 8 bits of the pressure Index, and the master acknowledges; - 11) The slave returns the next most significant 8 bits of the pressure index, and the master acknowledges; - 12) The slave returns the next least significant 8 bits of the pressure index, and the master acknowledges; - 13) The slave returns the least significant 8 bits of the pressure index, and the master doesn't acknowledge; - 14) The master sends a stop bit. # 5.2.2 Explanation This command is used for enquiring current instant flow index. The index consists of four 8-bit values, which are combined to give a 32-bit value as follows: ``` The flow index = {the most significant 8 bits } \times16777216 + {the next most significant 8 bits } \times65536 + {the next least significant 8 bits } \times256 + {the least significant 8 bits } ``` The actual flow value can be calculated as the following. The actual flow value = the flow index / 1000. The flow unit SLPM. This command is used for enquiring current instant pressure index. The index consists of four 8-bit values, which are combined to give a 32-bit value as follows: ``` The pressure index = {the most significant 8 bits } \times16777216 + {the next most significant 8 bits } \times65536 + {the next least significant 8 bits } \times256 + {the least significant 8 bits } ``` The actual pressure value can be calculated as the following. The actual flow value = the pressure index / 1000. The pressure unit cmH2O. 5.3 Read I²C Address (Command Code: 85h) #### 5.3.1 Procedure This command is a "pure" command (which has no command values). The procedure for reading I²C address of the flow sensor is as follows: - 1) The master sends a start bit: - 2) The master sends "slave address + write bit", and the slave acknowledges; - 3) The master sends the command code "85h", and the slave acknowledges; - 4) The master sends a re-start bit; - 5) The master sends "slave address + read bit", and the slave acknowledges; - 6) The slave returns the I²C address, and the master doesn't acknowledge; - 7) The master sends a stop bit. # 5.3.2 Explanation This command is used for enquiring the I²C address. For detailed discussions on I²C address, please refer to Section 4. 5.4 Set I²C Address (Command Code: 05h) #### 5.4.1 Procedure This command is a "compound" command with one command value, which should be an even number between 02h and FEh, representing I²C address of the flow sensor. The procedure is as follows: - 1) The master sends a start bit; - The master sends "slave address + write bit", and the slave acknowledges; - 3) The master sends the command code "05h", and the slave acknowledges; - 4) The master sends the command value (i.e., I²C address), and the slave acknowledges; - 5) The master sends a stop bit. # 5.4.2 Explanation This command is used for setting the I^2C address. For detailed discussions on I^2C address, please refer to Section 4. 5.5 Measure Offset (Auto Zero) (Command Code: 1Ch) #### 5.5.1 Procedure This command is a "compound" command. Its command value can be any number since it acts as dummy. The procedure is as follows: - 1) The master sends a start bit; - 2) The master sends "slave address + write bit", and the slave acknowledges; - 3) The master sends the command code "1Ch", and the slave acknowledges; - 4) The master sends the command value (e.g., any number), and the slave acknowledges; - 5) The master sends a stop bit. # 5.5.2 Explanation This command is used for requesting the flow sensor to calibrate its offset voltage index automatically and then store it internally. Please make sure that the flow sensor is at the zero flow condition when the offset calibration is under performing. This offset calibration will reduce the measurement error, and the modification of the offset voltage index will do no harm on the measurement accuracy. # 5.6 Read Offset(Command Code: 81h) This command is a "pure" command (which has no command values). The procedure is as follows: - 1) The master sends a start bit; - 2) The master sends "slave address + write bit", and the slave acknowledges; - The master sends the command code "81h", and the slave acknowledges; - 4) The master sends a re-start bit; - 5) The master sends "slave address + read bit", and the slave acknowledges; - 6) The slave returns the most significant 8 bits of the Offset Index, and the master acknowledges; - 7) The slave returns the least significant 8 bits of the Offset index, and the master doesn't acknowledge; - 8) The master sends a stop bit. # 5.6.2 Explanation This command is used for enquiring offset index. The index consists of two 8-bit values, which are combined to give a 16-bit value as follows: The offset index = {the most significant 8 bits } \times 256 + {the least significant 8 bits } # References: [1] I²C-Bus Specification and User Manual, Philips Semiconductors (now NXP Semiconductors). Rev. 03, 19 June 2007. This document contains confidential information that is proprietary to Siargo Ltd, its subsidiaries and affiliates. No part of this document may be disclosed or conveyed to, used by, or copied for, any third party without prior written permission of Siargo Ltd.